ГЭС

93,6

129

167

168

173

175

177

177

АЭС

3,5

54,0

118

120

120

119

97,8

99,5

Проанализировав данные этих таблиц, можно заметить, что производство электроэнергии, достигнув пика в 1990 году, с 1991-го года начало снижаться. Это можно объяснить кризисными явлениями в российской экономике и общим спадом в промышленности (в 1995 году индекс физического объема продукции к 1990 году составил 50, т.е. производство снизилось в два раза). В большей степени это коснулось производства электроэнергии на ТЭС (значительный спад). Меньший спад производства произошел на АЭС, а на ГЭС резко замедлились темпы роста.

Итак, основным типом электростанций в России являются

тепловые

(ТЭС). Эти установки вырабатывают примерно 67% электроэнергии России.

На их размещение влияют топливный и потребительский факторы. Наиболее мощные электростанции располагаются в местах добычи топлива. ТЭС, использующие калорийное, транспортабельное топливо, ориентированы на потребителей.

Существует несколько принципов классификации ТЭС:

1. ТЭС делятся на конденсационные (КЭС) и ТЭЦ.

2. По виду используемой энергии выделяют установки:

А) работающие на традиционном органическом

топливе (уголь, торф, сланцы, мазут, природный газ);

Б) геотермические (ГТЭС).

3. По характеру обслуживания потребителей различают:

А) районные ТЭС, начиная с плана ГОЭЛРО,

государственные районные электрические

станции (ГРЭС);

Б) центральные, расположенные вблизи центра

энергетических нагрузок.

4. По принципу взаимодействия все электростанции

делятся на системные и изолированные (работающие вне

энергосистем).

Тепловые электростанции используют широко распространенные топливные ресурсы, относительно свободно размещаются и способны вырабатывать электроэнергию без сезонных колебаний. Их строительство ведется быстро и связано с меньшими затратами труда и материальных средств. Но у ТЭС есть существенные недостатки. Они используют невозобновимые ресурсы, обладают низким КПД (30-35%), оказывают крайне негативное влияние на экологическую обстановку. ТЭС всего мира ежегодно выбрасывают в атмосферу 200-250 млн. т золы и около 60 млн. т сернистого ангидрида[6], а также поглощают огромное количество кислорода. Установлено, что уголь в микродозах почти всегда содержит U238, Th232 и радиоактивный изотоп углерода. Большинство ТЭС России не оснащены эффективными системами очистки уходящих газов от оксидов серы и азота. Хотя установки, работающие на природном газе экологически существенно чище угольных, сланцевых и мазутных, вред природе наносит прокладка газопроводов (особенно в северных районах).

Первостепенную роль среди тепловых установок играют конденсационные электростанции (КЭС)

. Они тяготеют и к источникам топлива, и к потребителям, и поэтому очень широко распространены.

Чем крупнее КЭС, тем дальше она может передавать электроэнергию, т.е. по мере увеличения мощности возрастает влияние топливно-энергетического фактора. Ориентация на топливные базы происходит при наличии ресурсов дешевого и нетранспортабельного топлива (бурые угли Канско-Ачинского бассейна) или в случае использования электростанциями торфа, сланцев и мазута (такие КЭС обычно связаны с центрами нефтепереработки).

ТЭЦ (теплоэлектроцентрали)

представляют собой установки по комбинированному производству электроэнергии и теплоты. Их КПД доходит до 70% против 30-35% на КЭС. ТЭЦ привязаны к потребителям, т.к. радиус передачи теплоты (пара, горячей воды) составляет 15-20 км. Максимальная мощность ТЭЦ меньше, чем КЭС.

В последнее время появились принципиально новые установки:

· газотурбинные (ГТ) установки, в которых вместо паровых применяются газовые турбины, что снимает проблему водоснабжения (на Краснодарской и Шатурской ГРЭС);

· парогазотурбинные (ПГУ), где тепло отработавших газов используется для подогрева воды и получения пара низкого давления (на Невинномысской и Кармановской ГРЭС);

· магнитогидродинамические генераторы (МГД-генераторы), которые преобразуют тепло непосредственно в электрическую энергию (на ТЭЦ-21 Мосэнерго и Рязанской ГРЭС).

В России мощные (2 млн. кВт и более) построены в Центральном районе, в Поволжье, на Урале и в Восточной Сибири.

На базе Канско-Ачинского бассейна создается мощный топливно-энергетический комплекс (КАТЭК). В проекте предусмотрено строительство восьми ГРЭС мощностью по 6,4 млн. кВт. В 1989 г. был введен в строй первый агрегат Березовской ГРЭС-1 (0,8 млн. кВт).

В результате экономического кризиса 90-х производство электроэнергии на ТЭС значительно снизилось, что ощутимо повлияло на общероссийские показатели.

Геотермические электростанции (ГТЭС)

, в основе работы которых лежит освоение глубинной теплоты земных недр, напоминают ТЭЦ, но связаны с источником энергии. В России подобные электростанции сооружены на Камчатке: Паужетская (11 тыс. кВт)

Атомные электростанции (АЭС)

в качестве топлива используют уран. Он легко транспортабелен, что исключает зависимость АЭС от топливно-энергетического фактора. Установки ориентированы на потребителей и расположены в районах с ограниченными энергетическими ресурсами или напряженным топливно-энергетическим балансом. Количество теплоты, полученное при расходе 1 кг урана (U235), равно получаемому при сжигании 2,5 т лучшего угля.

В 1954 году вступила в строй опытная Обнинская АЭС. Затем АЭС сооружались в наиболее густонаселенных и часто уязвимых с экологической точки зрения местах, что вызывало недовольство общественности.

Из-за аварии в Чернобыле в 1986 году программа развития атомной энергетики была сокращена.

После значительного увеличения производства электроэнергии в 80-е годы темпы роста замедлились, а в 1992-1993 гг. начался спад.

При правильной эксплуатации, АЭС – наиболее экологически чистый источник энергии. Их функционирование не приводит к возникновению «парникового» эффекта, выбросам в атмосферу в условиях безаварийной работы, и они не поглощают кислород.

Атомные электростанции большой мощности экономичнее КЭС (себестоимость электроэнергии примерно в 2 раза меньше), но на мощность АЭС введены ограничения.

К недостаткам АЭС можно отнести трудности, связанные с захоронением ядерных отходов, катастрофические последствия аварий и тепловое загрязнение используемых водоемов.

В 1990 году на атомных электростанциях было произведено около 10% всей электроэнергии России. В 1995 году доля АЭС в производстве электроэнергии составила примерно 11,6%.

В нашей стране мощные АЭС расположены: в Центральном и Центрально-Черноземном районах, на Севере, на Северо-Западе, на Урале, в Поволжье и на Северном Кавказе.

Новым в атомной энергетике является создание АТЭЦ и АСТ. На АТЭЦ, как и на обычной ТЭЦ, производится тепловая и электрическая энергия, а на АСТ – только тепловая. АТЭЦ действует в поселке Билибино на Чукотке, строятся АСТ.

Гидроэлектростанции

являются весьма эффективными источниками энергии. Они используют возобновимые ресурсы - механическую энергию падающей воды. Необходимый для этого подпор воды создается плотинами, которые воздвигают на реках и каналах. Гидравлические установки позволяют сокращать перевозки и экономить минеральное топливо (на 1 кВт-ч расходуется примерно 0,4 т угля). Они достаточно просты в управлении и обладают очень высоким коэффициентом полезного действия (более 80%). Себестоимость этого типа установок в 5-6 раз ниже, чем ТЭС, и они требуют намного меньше обслуживающего персонала.

Гидравлические установки представлены гидроэлектростанциями (ГЭС), гидроаккумулирующими электростанциями (ГАЭС) и приливными электростанциями (ПЭС). Их размещение во многом зависит от природных условий, например, характера и режима реки. В горных районах обычно возводятся высоконапорные ГЭС, на равнинных реках действуют установки с меньшим напором, но большим расходом воды. Гидростроительство в условиях равнин сложнее из-за преобладания мягких оснований под плотинами и необходимости иметь крупные водохранилища для регуляции стока. Сооружение ГЭС на равнинах вызывает затопление прилегающих территорий, что приносит значительный материальный ущерб.

В целом по России в настоящее время использована 1/5 часть экономически обоснованного потенциала гидроэнергоресурсов. Аналогичны показатели по Сибири, но в европейской части страны ресурсы использованы на 2/5, причем максимальные значения характерны для Урала и Поволжья.

В данной таблице представлено использование экономического потенциала гидроэнергетических ресурсов по регионам России.[7]

Район

Экономический потенциал, млрд. кВт-ч

Использование экон. Потенциала

На 1.1.

1976 г.

На 1.1.

1981 г.

На 1.1.

1990 г.

Северо-Западный и Северный

43000

27,8

28,0

29,8

Центральный

13000

23,5

25,0

58,5

Поволжский и Уральский

50000

65,1

67,1

70,5

Северный Кавказ

25000

21,5

24,0

34,8

Западная Сибирь

77000

2,3

2,3

2,3

Восточная Сибирь

350000

16,8

24,4

26,7

Дальний Восток

294000

0,9

2,96

3,8

Экономический поте

Перейти на страницу: 1 2

Публикации по географии >>>

Европа для мусульман - постоялый двор или отчий дом
«ЕВРОПА ДЛЯ МУСУЛЬМАН – постоялый двор или отчий дом?» В сознании абсолютного большинства людей существует резкая граница между западным миром и Востоком, как у Р.Киплинга: ...

Социально-экономическая характеристика Македонии
МАКЕДОНИЯ, Республика Македония, государство на Балканском п-ове. Занимает ок. 40% исторической области Македония. Площадь 25 тыс. 333 кв. км. На севере граничит с Сербией и Черногорией, на востоке – с Болгарией ...

Галерея

Демографические процессы

Демографические процессы представляют собой: рождаемость, продолжительность жизни, смертность, статистика абортов, детская смертность, самоубийства, миграция, интеллектуальная эмиграция из России.

>>>